If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-22b+112=0
a = 1; b = -22; c = +112;
Δ = b2-4ac
Δ = -222-4·1·112
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-6}{2*1}=\frac{16}{2} =8 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+6}{2*1}=\frac{28}{2} =14 $
| 13/13=i | | -2(-1y+5)=-8 | | 13/13=h | | 5x+12=3xx7 | | 13/13=g | | -2(a+4)=44 | | 2x+9=9+10x | | 4x+7=2x+-5 | | 10+20x=-120 | | 3x+12=2(x+4) | | 15=8x−5+2x | | X+2y=16, | | 2y,y=20 | | m^2-17=3m | | -6=2/5m | | 5/x+1=x+1/x^2-1 | | (12x/3x)+2=6 | | 4-8x=x+31 | | X+2(x+1)-3(x+2)+4(x+3)=6(x+4) | | 13/13=f | | 7x-(4-x)=5(x+1)+x | | 13/13=e | | 13/13=d | | 13/13=c | | 13/13=b | | 10=n-15 | | 13/13=a | | 12=5b+b | | d/6-7=50 | | 6^3n=75 | | 4^3x+4=32^2 | | 5+2(3v-1)=-3(7v-3)+9v |